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INVITED ARTICLE

Extending the Maier–Saupe theory to cybotactic nematics

S. Droulias, A.G. Vanakaras and D.J. Photinos*

Department of Materials Science, University of Patras, Patras, Greece

(Received 11 February 2010; accepted 19 April 2010)

A theory of thermotropic nematic liquid crystals in which molecules form internally ordered clusters is presented.
The formulation is based on the same molecular-field approximation and form of the anisotropic potential used in
the Maier–Saupe theory. One uniaxial nematic and two macroscopically isotropic phases are predicted. The lower-
temperature isotropic phase consists of thermodynamically stable clusters with internal orientational order.
The transition from this phase to the nematic phase is characterised by the divergence of cluster size whilst the
entropy and the order parameter change continuously.

Keywords: nematics; cybotactic; molecular theory; molecular-field approximation

1. Introduction

The Maier–Saupe (M–S) theory [1–3] is a historical

milestone in the theoretical description of thermotro-

pic nematics, the structurally simplest, most common

and technologically most important of all types of

liquid crystals. Considering its simplicity, the M–S

theory is amazingly successful in accounting for the

basic features of the nematic–isotropic (N–I) phase
transition and of the temperature dependence of the

anisotropy exhibited by dielectric, diamagnetic and

optical properties of the nematic phase. In their pio-

neering paper [1], entitled ‘A simple molecular theory of

the nematic liquid-crystalline state’, Maier and Saupe

wrote ‘A theory of nematic liquids must above all pro-

vide an explanation for the existence of this long-range

order, as well as for the order of magnitude of the degree

of order, and of its temperature dependence’. And this is

precisely what their ‘simple molecular theory’ does.

The M–S theory, being based on the molecular-field

approximation, has all the drawbacks associated with

the complete neglect of correlations in the orientations

and positions of neighbouring molecules; and this is

reflected in several qualitative and quantitative devia-

tions of the theoretical predictions from the experimen-
tally observed behaviour. Also, due to the very simple

form used for the molecular-field potential, the theory

predicts universal values for the orientational order

parameter, for the entropy change at the N–I transition

and a universal temperature dependence of the order

parameter in terms of a reduced temperature. Although

this is not quite in agreement with what is observed

experimentally, the deviations are in general not
very large for common thermotropic nematics.

Improvement of the agreement with experiment has

been obtained either by improving on the molecular-
field approximation [4] or by using more elaborate

forms for the molecular-field potential [5]. Aside from

such improvements, much attention has been devoted

[6, 7] to understanding why the theory works so well

despite (i) the neglect of molecular correlations, (ii) the

assumed dominance of long-range anisotropic disper-

sion interactions between the molecules and (iii) the

isotropic averaging of those interactions over the inter-
molecular positions. One of the reasons for the success-

fulness of the M–S theory is that, as pointed out by

Gelbart and co-workers [8, 9], the analytical form used

for the molecular-field is quite general and can accom-

modate short-range interactions as well, particularly

intermolecular repulsions of the excluded-volume

type. It has also been suggested by De Jeu [7] that the

successfulness of the M–S theory is due to mutually
compensating approximations made in the derivation

of the molecular-field. Yet another explanation, sug-

gested by Luckhurst and Zannoni [6], is based on the

formation of molecular clusters with internal orienta-

tional ordering that persists in the isotropic phase as

well. The ordering within the clusters is dictated by the

short-range anisotropic interactions whereas the

macroscopic nematic order is dominated by the long-
range anisotropic interactions between the clusters. The

shape of the clusters need not be as anisometric as that

of the individual molecules and, therefore, the isotropic

averaging of just the long-range interactions over the

inter-cluster positions would not be unrealistic. A simi-

lar justification, invoking ‘sterically determined’ short-

range order, was proposed by Maier and Saupe [3] in
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the original development of their theory, where they

suggested that bundles of molecules, rather than indi-

vidual molecules, could be considered as the interacting

units for the statistical treatment. For the case of the
nematogen para-azoxyanisole, they estimated that such

bundles consist of approximately four molecules

arranged parallel to one another.

There were early reports on experimental observa-

tions of possible ferroelectric effects in common

nematics [10] suggesting the presence of ordered mole-

cular aggregates in both the nematic and the isotropic

phases. Direct X-ray manifestations of the presence of
clusters in certain nematics, termed by De Vries as

cybotactic, were reported and confirmed in the early

1970s [11] and these are now commonly observed in

many types of nematogens, either as pretransitional

manifestations of a lower temperature smectic phase

or as stable structural features. Analogous structures

were known long before in normal liquids [12], for

which the term ‘cybotactic’ was originally introduced.
Lately, it is becoming increasing clear [13–20] that the

presence of local ordered structures is the key to under-

standing many of the properties of the thermotropic

nematic phase, particularly the manifestations of biax-

ial and polar ordering. As succinctly put by Samulski

[20] ‘all nematics are cybotactic’. It seems, therefore,

appropriate to attempt to formulate a simple theory

of all nematics by extending the M–S theory to allow
explicitly for the presence of internally ordered mole-

cular clusters. This is the purpose of the present paper.

After a brief review of the M–S theory, the formula-

tion of the free energy for the extended theory is out-

lined in the next section. For simplicity, the formulation

is restricted to uniaxial molecules and, therefore, to

uniaxial nematics. However, the extended theory

would be particularly useful for the description of biax-
ial nematics, since it extends Freiser’s theory of biaxial

nematics [21] to the experimentally more relevant

regime of cybotactic nematics consisting of biaxial clus-

ters [13–20]. A Landau–de Gennes description of the

latter type of nematics has been reported [13]. Results of

calculations on the molecular ordering and on the ther-

modynamics of the phase transitions involved are pre-

sented in Section 3 and are discussed relative to the
results of the M–S theory. Section 4 contains the con-

clusions and the perspectives of the extended theory.

2. Internal and macroscopic nematic order of

molecular clusters in the molecular-field approximation

2.1 Review of the Maier–Saupe theory

The molecular-field character of the M–S theory is due

to the neglect of correlations between the orientations

of neighbouring molecules in the nematic liquid (an

excellent pedagogical presentation of the M–S theory

can be found in [22]; see also [23]). Thus, a molecule is

assumed to orient under the action of a molecular-

field, independently of the orientations of its neigh-

bours. In turn, the molecular-field originates from the

collective alignment of all the molecules surrounding

that molecule and, therefore, reflects the extent of
molecular ordering in the phase. In statistical

mechanics terminology, the molecular-field approxi-

mation (MFA) entails the replacement of the N-mole-

cule joint probability distribution p(N) by a product of

N effective probability distributions f(oi) of the orien-

tations for each of the N molecules. Schematically,

pðNÞðr1;o1; r2;o2; :::::rN ;oNÞ

�!MFA

V�Nf ðo1Þf ðo2Þ:::f ðoNÞ; (1)

where N is the number of molecules in the nematic liquid,

oi is the orientation of the ith molecule (i ¼ 1,2,. . .,N)

relative to the nematic director n and ri is the position
vector of that molecule within the volume, V, of the

sample.

For molecules interacting in pairs, the effective

probability distribution can be related self-consistently

to the intermolecular pair potential u(ri, j, oi, oj) by

minimisation, at constant density, of the free energy

functional

F

N
¼ 1

2
ðN � 1Þ

ð
f ðo1Þf ðo2Þ�uðo1;o2Þdo1do2

þ kBT

ð
f ðoÞ ln f ðoÞdo: (2)

Here, the positionally averaged anisotropic potential
�uðo1;o2Þ is given by the exact (i.e. not restricted to the

MFA) expression

�uðo1;o2Þ ¼
1

V

ð
gðr1;2;o1;o2Þ uðr1;2;o1;o2Þ dr1;2; (3)

where g(r1,2,o1,o2) is the pair correlation function
between molecules 1 and 2. In the M–S theory the mole-

cules are assumed, for simplicity, to be perfectly sym-

metric about their long axis (uniaxial molecules) and a

crucial approximation is made by putting �u in the form

�uð#1; #2Þ � �u0
a3

V
P2ðcos#1;2Þ (4)

in which u0 and a represent, respectively, the effective

strength and range parameters of the anisotropic part

of the molecular interaction. The angles #1; #2 describe
the orientations of the long axes of molecules 1 and 2

relative to the director n, #1;2 denotes the angle of

those axes relative to each other and P2ðcos#1;2Þ;
ð3 cos2 #1;2 � 1Þ=2 is the second Legendre polynomial.

Using the approximate anisotropic potential of
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Equation (4), the functional minimisation of the free

energy in Equation (2) with respect to the orienta-

tional distribution f ð#Þ leads to the well-known

expression

f ð#Þ ¼ 1

�
exp bSP2ðcos#Þð Þ; (5)

in which

b ¼ u0

kBT

ðN � 1Þa3

V
(50)

is a dimensionless inverse temperature coefficient

that depends on the strength and range of the aniso-

tropic part of the molecular interactions and on

the density. The normalisation factor is

�;
Ð1
�1

exp bSP2ðcos#Þð Þdðcos#Þ and S is the so-called

Saupe order parameter of the nematic phase, which is

evaluated in terms of b by solving the self-consistency

equation

S ;
ð1
�1

f ð#ÞP2ðcos#Þdðcos#Þ: (6)

When this equation is satisfied, the free energy expres-

sion in Equation (2) leads to the equation

F � F0

NkBT
¼ 1

2
bS2 � ln �=2ð Þ; (7)

in which F0 denotes the fully isotropic part of the free

energy. Equation (6) has the solution S¼ 0, correspond-

ing to the isotropic phase, and, for b larger than a critical

value bc’ 4.48, it also has solutions with S � 0, corre-
sponding to the nematic phase. According to the free

energy expression in Equation (7), the nematic phase

solutions of Equation (6) become thermodynamically

stable for b above the value bN-I’ 4.54, which, therefore,

marks the N–I transition. At the transition, the order

parameter changes discontinuously from S ¼ 0 to the

value SN-I ¼ 0.43, from which it increases continuously

with further increasing b, as shown in the well-known
diagram of Figure 1. According to Equation (7), the

entropy change �s per molecule at the transition is

fixed at ð�sÞN�I=NkB ¼ �bN�IS
2
N�I=2 ’ �0:42

2.2 Internal and macroscopic nematic ordering of
molecular clusters

After this brief review of the M–S theory, we outline the

formulation of the free energy for a system of uniaxial

molecules organised into clusters. As a conceptual start-

ing point we may consider the replacement of each
individual molecule in the M–S formulation by a cluster

of molecules. In this picture, the direction of the long axis

of the M–S molecule is replaced by the direction of pre-

ferential alignment of the molecules forming the cluster.

Equivalently, one may consider the partitioning of the
entire sample of the N molecules into a number R

of clusters, with the molecules of each cluster exhibiting

preferential alignment along some direction (see Figure 2).

In any case, the ordering within the clusters is not assumed

to be perfect. Accordingly each cluster is characterised not

only by the number of molecules forming it and by the

direction of preferential alignment of those molecules, but

also by the degree of alignment of the molecules and by
the energy and entropy associated with that degree of

alignment. Thus, part of the free energy of the entire

4.0 4.5 5.0 5.5 6.0
0.0

0.5

1.0

(bc, Sc)

(bN–I ,SN–I)

N

b

S

I

Figure 1. Order parameter versus b (inverse temperature)
according to the M–S theory. The solid line corresponds to
the thermodynamically stable states and the dotted line to
ordered solutions of the self-consistency equation which lack
thermodynamic stability. The phase transition point
ðbN�I; SN�IÞ and the onset ðbc,ScÞof the ordered solutions
upon cooling are also indicated.

rΘ

irθ
n(r)

n

Figure 2. Schematic representation of the internal
molecular order in the clusters and of their relative
orientations. Line segments represent the long axes of the
molecules. �r is the polar angle between the local director of
the rth cluster, n(r), and the macroscopic nematic director n.
�ir is the angle between the long axis of a molecule and the
local director of the cluster it belongs to.
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sample is due to the internal interactions and to the

ordering within the individual clusters. Another part

comes from the collective energy and entropy of the

clusters, which interact with one another and also move

and reorient relative to one another. A third part of the

free energy is purely entropic and is due to the liquid

nature of the system which allows the exchange of mole-
cules between clusters.

To put these parts together, we label each cluster

by the index r (¼1,2,. . .,R) and denote by nr the num-

ber of molecules forming the rth cluster. The sum of

the cluster populations gives the total number N of

molecules in the sample, i.e.
PR
r¼1

nr ¼ N. Using the unit

vector n(r) to denote the direction of preferential align-
ment (local director) of the molecules within the rth

cluster, the orientation of that cluster relative to the

macroscopic director n of the nematic phase can be

specified by the angle �r (see Figure 2), where cos�r¼
n�n(r). The molecules within the rth cluster are labelled

by the index ir ¼ 1,2,..., nr, and the directions of their

long axes relative to the local director n(r) are specified

by the angles �ir . The local director is defined as the

principal z-axis of the tensor

S
0ðrÞ
ab ;

1

nr

Xnr

ir¼1

3ðlir � aÞðlir � bÞ � ða � bÞð Þ=2;

where lir denotes the unit vector associated with the

long axis of the ir molecule and a, b stand for unit

vectors in the directions of the cluster-fixed axes

x(r),y(r),z(r). Accordingly, the averaging of the molecular
orientations within a cluster is subject to the constraints

Xnr

ir¼1

cosjir
sin 2�ir ¼

Xnr

ir¼1

sinjir
sin 2�ir

¼
Xnr

ir¼1

sin 2jir
sin2�ir ¼ 0

for the angles �ir , jir
of the molecular vectors lir in the

cluster-fixed frame x(r), y(r), zðrÞðjjnðrÞÞ. Similarly, the

macroscopic director n is defined as the Z-principal

axis of the tensor

S00AB ;
1

N

XR

r¼1

nr 3ðnðrÞ � AÞðnðrÞ � BÞ � ðA � BÞ
� �

=2;

with A, B denoting the directions of the macroscopic

axes X, Y, Z. Hence, the averaging of the cluster

orientations is subject to analogous constraints for

the angles �r,Fr that describe the directions of the
cluster directors n(r) in the macroscopic frame.

To simplify the formulation of the free energy,

we assume that all the clusters are of the same size,

i.e. that nr’n ¼ N/R for all r ¼1,2,. . .,R. At uniform

molecular density r ¼ N/V, the assumption of equal

populations implies that the clusters are of equal

volume u ; n=r ¼ V=R and, furthermore, that they

have the same degree of internal ordering (described

by the single order parameter S0ðrÞzz ¼ S0 ), albeit in dif-

ferent directions n(r), and also the same degree of
ordering with respect to the macroscopic director n

(described by the order parameter S00 ¼ S00ZZ).

In order to apply the MFA of Equation (1) to the

ensemble of molecular clusters illustrated in Figure 2,

we introduce two types of orientational distribution

functions. For a molecule i belonging to the rth cluster

we use f 0 ð�irÞto describe the distribution of its mole-

cular axis relative to the cluster director n(r). The other
type of distribution function is denoted by f 00ð�rÞ and

describes the distribution of the cluster director n(r)

relative to the macroscopic director n. In accord with

the assumption of identical cluster sizes, what changes

in the orientational distributions f0 and f00 on going

from one cluster to the other is just the orientation of

the cluster director n(r). Then, by analogy with

Equation (1), the orientational entropy in the MFA
can be expressed as the sum of two contributions. One

is associated with the reorientations of the molecules

within the clusters and can be determined from the

respective orientational distribution as

� kBRðn� 1Þ
ð

f 0ð�Þ ln f 0ð�Þð Þdðcos �Þ:

The other contribution is associated with the reorien-

tations of the cluster directors n(r) and is given by

� kBðR� 1Þ
ð

f 00ð�Þ ln f 00ð�Þð Þdðcos �Þ:

Note that although there are R clusters in the sample,

the reorientations of their respective directors are not

completely independent, due to the constraints
involved in the definition of the macroscopic director.

Hence the factor (R–1) in the orientational entropy of

the R clusters. Similarly, the factor (n–1) in the orien-

tational entropy of the n molecules within any of the R

clusters is to account for the constraints imposed by

the identification of the respective cluster director.

The free energy contribution of the anisotropic

interactions is evaluated by analogy with Equations
(3) and (4) and can be separated into terms associated

with interactions between molecules belonging to the

same cluster and interactions between molecules

belonging to different clusters. The former are given by

�u0ð�1;2Þ ¼
1

u2

ð
u

dr2

ð
u

dr2gðr1;2; �1; �2Þ uðr1;2; �1; �2Þ

’ �u0
a3

u
v0P2ðcos �1;2Þ (8)
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and the latter by

�u00ð#1r;1r0 Þ ¼
1

Vu2

ð
V

ð
uðr0 Þ

ð
uðrÞ

gðr1r;1r0 ; #1r
; #1r0 Þ

0
B@

uðr1r;1r0 ; #1r
; #1r0 Þ dr

1r
dr

1
r0

!
dRr;r0

’ �u0
a3

V
v00P2ðcos#1r;1r0 Þ;

(9)

where Rr;r0 denotes the position of cluster r0 relative to

cluster r and the integrations over the molecular posi-

tions r1r
and r1r0 extend respectively over the volumes of

the clusters r and r0. The dimensionless factors v0 and v00

are functions of the cluster volume. Therefore, at uni-

form molecular density they are functions of the cluster

population n. Obviously the in-cluster integration factor

v0 vanishes for n � 1 and reaches the asymptotic value
v0 ! 1 for macroscopically large clusters (n! N). The

n-dependence of #0 for intermediate cluster sizes depends

on the details of the molecular interactions and, to some

extent, on the geometry of the clusters. The shorter the

effective range of the intermolecular interactions, the

more rapidly v0 approaches the saturation value 1.

An explicit form of this dependence is considered in

Section 3. Turning now to v00 of Equation (9), we note
that at uniform molecular density the spatial average of

the interaction between a pair of molecules should be

fixed at the value given in Equation (4) independently of

which clusters the molecules belong to. Therefore, com-

bining Equation (4) with Equations (8) and (9), we

obtain the general relation #0 þ v00 ¼ 1.

Altogether then, for a uniform molecular density

N=V and a uniform number n of molecules per cluster,
the relevant free energy difference is

F � F0

NkBT
¼ � 1

2
bv0
ð

f 0ð�1Þf 0ð�2ÞP2ð�1;2Þdðcos �1Þdðcos �2Þ

þ n� 1

n

ð
f 0ð�Þ ln 2f 0ð�Þð Þdðcos �Þ

� 1

2
bð1� v0Þ

ð
f 00ð�rÞf 00ð�r0 Þf 0ð�1r

Þf 0ð�1r0 Þ

P2ð#1r;1r0 Þdðcos �1r
Þdðcos �1r0 Þdðcos �rÞdðcos �r0 Þ

þ R� 1

N

ð
f 00ð�Þ ln 2f 00ð�Þð Þdðcos �Þ: ð10Þ

The functional minimisation of this free energy with

respect to f 0 and f 00 leads to the following expressions

for these distribution functions:

f 0ð�Þ ¼ 1

�0
eb n

n�1 v0þð1�v0ÞS002ð ÞS0P2ðcos �Þ;

f 00ð�Þ ¼ 1

�00
eb N

R�1ð1�v0ÞS02S00P2ðcos �Þ:

(11)

The order parameters S0 and S00, measuring, respec-

tively, the degree of molecular ordering within the

clusters and the degree of ordering of the clusters in

the macroscopic sample, are obtained from the self-

consistency conditions

S0 ¼
ð1

�1

f 0ð�ÞP2ðcos �Þdðcos �Þ;

S00 ¼
ð1

�1

f 00ð�ÞP2ðcos �Þdðcos �Þ:
(12)

When these conditions are satisfied, the free energy of

Equation (10) can be expressed as

F � F0

NkBT
¼ 1

2
b v0 þ 3ð1� v0ÞS002
� �

S02

� n� 1

n
lnð�0=2Þ

� 1

n
� 1

N

� �
lnð�00=2Þ: (13)

A third condition, from which the cluster size para-
meter n can be specified in terms of the temperature

variable b, is obtained by minimising the free energy

with respect to n, subject to the constraint nR ¼ N ¼
constant ..1. This yields the equation

bS02n

�
1

2
ð1� S002Þn @v0

@n
þ R

R� 1
ð1� v0ÞS002

� v0 þ ð1� v0ÞS002
n� 1

�
¼ lnð� 00=�0Þ:

(14)

It is apparent from Equations (10)–(14) that, in the
limit n! N (therefore, R! 1, i.e. a sample consisting

of a single cluster that contains all the molecules and

v0 ! 1) the distribution f 00 is irrelevant since the direc-

tor n(r)of the single cluster coincides with the macro-

scopic director n, implying S00 ¼ 1 and the distribution

f 0 becomes identical to the M–S distribution f of

Equation (5). Similarly, in the limit n! 1 (therefore,

R! N, i.e. the clusters are identified with single mole-
cules and v0 ! 0) f 0 becomes irrelevant since the direc-

tor n (r)of the single cluster coincides with molecular

axis l, and the distribution f 00 becomes identical to f of

the M–S theory. In both limiting cases the free energy

expressions in Equations (7) and (13) coincide.

3. Results and discussion

The free energy minimisation conditions in Equations

(12) and (14) accept three kinds of solutions corre-

sponding to the following phases.

(i) The ‘molecular’ isotropic phase (I), in which

S0 ¼ S00 ¼ 0 . The subdivision into clusters in this
phase is meaningless as, in the absence of internal

ordering, a cluster director n(r) cannot be defined.

Therefore, cluster size is irrelevant for this phase.
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(ii) The ‘cybotactic’ isotropic phase (I 0), in which

S0�0; S00 ¼ 0 , consisting of internally ordered clusters

whose orientations are distributed, yielding a macro-

scopically isotropic fluid. According to Equations (12)

and (13), for sufficiently large n so that ðn� 1Þ=n ’ 1,

the self-consistency conditions and the free energy for

the transition from the I to the I 0phase differ from those
of the N–I transition in the M–S theory only in that b is

replaced by b0 ¼ bv0. Accordingly, the I 0 phase is stabi-

lised relative to the I phase for b0 exceeding the universal

value b0I0�I ’ 4:54. This corresponds to a transition

temperature TI0�I which is higher than the temperature

T
ðM�SÞ
N�I , predicted for the N–I transition in the M–S

theory, by a factor TI0�I=T
ðM�SÞ
N�I ¼ ðv0Þ�1

>1. Also, the

solutions corresponding to the I 0phase disappear for
b0< bc ’ 4:48. Aside from that, the in-cluster order

parameter S0 changes at the transition discontinuously

from S0 ¼ 0 to the universal value S0I0�I ¼ 0:43 and

follows a b0-dependence S0ðb0Þ which is the exact analo-

gue of the M–S SðbÞ shown in Figure 1.

(iii) The nematic phase (N), in which S0; S00�0 .

Depending on the functional form of v0, the N phase

can either be obtained directly from the I phase on
increasing b or can evolve from the I 0phase. In the latter

case the internally ordered clusters merge, on lowering the

temperature, to form a single cluster of the same uniaxial

nematic order and of macroscopic size ðn! NÞ. The

stabilisation of the N phase relative to I0, when applicable,

is obtained above a value of b which, unlike the M–S

theory, is not universal and depends on v0. According to

its definition in Equation (6), the molecular order para-
meter S for the macroscopic nematic phase is obtained by

averaging the orientations of a molecule relative to the

macroscopic nematic director n. Its value is, therefore,

equal to the product of the order parameters S
0

(the

orientational order of the molecule relative to the cluster

director n(r)) and S00 (the orientational order of n(r) relative

to n), i.e. S ¼ S0S00.
To describe the possible phase transitions in more

detail we consider a specific form of the function v0ðnÞ.
Rather than choosing a particular pair potential for the

molecular interaction and evaluating v0ðnÞ using

Equation (8), we will choose directly the functional

form of v0ðnÞ subject only to the general requirements

that it should be a continuous function of n � 1 increas-

ing monotonously from 0 (at n ¼ 1) to 1 (as n!1).

For the present illustrative purposes, a simple generic
form that meets these requirements is given by the

exponential dependence v0EðnÞ ¼ e� a=ðn�1Þ½ �� , with the

constants a; � > 0. As shown later, this form can lead

to different phase sequences depending on the values of

the parameters a and �, which illustrates adequately the

influence of v0ðnÞ, and thereby of the molecular inter-

actions, on the formation of ordered microstructures.

The results for the case with � ¼ 1 are summarised

in Figures 3 and 4. For a>1 the description is equiva-

lent to the M–S theory. Only a direct transition from

the I to the N phase is obtained on increasing b. The
transition temperature as well as the order parameter

and entropy values coincide with the universal values

of the M–S theory. For a< 1, the I 0 phase appears in

the diagram (see Figure 3(a)) at intermediate tempera-

tures between I and N. The transition values bI0�I and

bN�I0 respectively decrease and increase continuously

with decreasing a, starting from the common universal

value bN�I at a ¼ 1.
The values of the cluster order parameter S0 at the

transition from the I, either to the N or to the I0 phase

remain fixed at the universal value S0I0�I ¼ S0N�I ¼ 0:43

independently of a, whilst the value of S0 at the N� I0

phase increases continuously with decreasing a < 1

(see Figure 3(b)). This is generally in accord with the

relatively high order observed in cybotactic nematics

[17, 24, 25] and reflects the fact that the macroscopic
ordering results from the alignment of already ordered

bundles of molecules, rather than individual mole-

cules. In contrast, the fixed low value of S0I0�I reflects

the fact that the I0-I transition results from the order-

ing of individual molecules.

The cluster population n undergoes a discontinu-

ous jump at the I-I0transition from n ¼ 1 in the I to

n ¼ nI0�I in the I 0 phase and grows continuously from
there with decreasing temperature (see Figure 4).

The transition values nI0�I start out from diverging

values at a ¼ 1 and decrease with decreasing a (see

Figure 3(c)). The entropy change, ð�sÞI0�I, at the

I-I0transition is related to the M–S universal value of

the entropy change, ð�sÞðM�SÞ
N�I , according to the rela-

tion ð�sÞI0�I ¼ að�sÞðM�SÞ
N�I and, therefore, decreases

continuously with decreasing a (see Figure 3(d)). The
entropy change for the N� I0 is found to vanish.

The temperature dependence of the molecular

order parameters S0 and S and of the cluster popula-

tion n are shown in Figure 4 for the particular value of

the parameter a¼ 0.95. It is clear from these diagrams

that the stabilisation of the N phase occurs as the

cluster population grows divergently large and that

there is no discontinuous change of the order
parameter.

As n increases with b approaching bN�I0 , the free

energy of the nematic phase I0 becomes only slightly

higher than that of the phase and, therefore, stabilisa-

tion of the N phase in that case can be achieved by

applying a weak aligning field to the I0 phase. Thus, in

the large-n regime, the I0 phase shows the behaviour of

conventional thermotropic nematics which form
ordered domains of macroscopic size that can be

field-aligned into a state with a uniform director.
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Lastly, it should be noted that not only do the

quantitative features but also some of the qualitative

trends shown in Figures 3 and 4 for � ¼ 1 change on

varying the value of the � parameter. However, such

variations will not be discussed here.

4. Conclusions and perspectives

Our formulation of the molecular theory of cybotac-

tic nematics has followed closely the M–S theory in

that it is based on the molecular-field approximation

and uses the same functional form for the orienta-
tion dependence of the effective intermolecular

potential. The essential difference is that the possi-

bility of the formation of molecular clusters with

internal orientational order is explicitly allowed

for. In addition to its very profound implications

on the nature of the nematic phase, this extension

of the theory broadens significantly the range of

predictions and provides a systematic and physically
clear way of relaxing some of the inherent restric-

tions of the M–S theory regarding the universal

values for the order parameter and the entropy

change at the N–I transition.

(i) The theory predicts two stable macroscopi-

cally isotropic phases, one with complete

molecular disorder, I, and the other, I 0, con-

sisting of internally ordered molecular clus-
ters. The two phases are connected by a

first-order phase transition. The theory also

allows for phase transitions from either of

these phases to the macroscopically ordered

nematic phase, N.
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Figure 4. Calculated b-dependence of order parameters
and cluster populations using the same functional form as
in Figure 3 for v0 with the parameter a fixed at 0.95. (i) Order
parameters S0 (solid line for b < bN�I0 ’ 4:84) and S (solid
line for b � bN�I0 ), and (ii) cluster size n (dotted line) on a
logarithmic scale. At bN�I0 S ¼ S0 ’ 0:573. The dashed line
corresponds to the order parameter S of the nematic phase in
its metastable temperature range.
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(ii) The stability of these phases at a given tempera-

ture is dictated by the detailed intermolecular

position dependencies of the anisotropic

interactions.
(iii) The cluster size in the I 0phase increases continu-

ously with decreasing temperature; on approach-

ing the transition temperature to the nematic

phase it diverges to macroscopic values.

(iv) Depending on the intermolecular potential, the

values of the transition temperatures, order para-

meters and entropy changes may show consider-

able deviations from the universal values
predicted by the M–S theory.

(v) The M–S theory appears as a particular case of

the extended theory, obtained in the limits of

single-molecule clusters or of macroscopic sam-

ples consisting of a single cluster.
The extended theory retains the simplicity of the

M–S theory. It also retains its main weaknesses, nota-

bly the neglect of molecular correlations and the

absence of possible transitions to ordered phases

other than the nematic. Additionally, the present sim-

plified formulation of the theory neglects the possible
dispersion in the cluster sizes. More importantly, the

internal ordering of the clusters is restricted to have

the same symmetry as the ordered phase, i.e. uniaxial

nematic, thus excluding the experimentally interesting

cases where the clusters have smectic internal ordering

and give rise to macroscopically nematic phases.

However, a more general formulation is possible [26]

wherein these additional restrictions can be relaxed.
This opens up new perspectives for the understanding

of subtle features of the nematic phase stemming from

the possibility of molecular self-organisation in a hier-

archy of ordered microstructures. Such microstruc-

tures, not necessarily of the nematic type, can yield

macroscopically nematic media with significantly dif-

ferent physical properties and symmetries [14, 18, 20,

27] from the molecular nematics described in the pio-
neering work of Maier and Saupe and its subsequent

generalisation to biaxial nematics [21].
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[16] Görtz, V.; Southern, C.; Roberts, N.W.; Gleeson, H.F.;
Goodby, J.W. Soft Matter 2009, 5, 463–471.

[17] Keith, C.; Lehmann, A.; Baumeister, U.; Prehm, M.;
Tschierske, C. Soft Matter, 2010, 6, 1704–1721.

[18] Tschierske, C.; Photinos, D.J. J. Mat. Chem. 2010, 20,
4263–4294.
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